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EXECUTIVE SUMMARY 

Most source discriminants make use of the prominent regional phase Lg, so that a complete 
understanding of the generation and spectral characteristics of Lg from explosions is essential 
for improved and reliable monitoring of the Comprehensive Test Ban Treaty (CTBT). Our 
research provides valuable new information regarding the origin of both low and high 
frequency Lg. The low-frequency (up to about 2 Hz) part of the Lg spectra (including the most 
prominent peaks and nulls) appears to be due to the near-source scattering of explosion- 
generated Rg into S. Significant correlation between period of the observed peak in the 
network-averaged Lg spectra and known depths of the Paleozoic layer suggests that the spectral 
peaks are associated with resonance caused by sharp impedance contrast in the source region. 
The observed null frequencies in the Lg spectra are in agreement with those expected from Rg 
due to a CLVD source at about one-third the shot depth. Evidence for these results comes 
mostly from analysis of broadband regional data from over 40 Nevada Test Site (NTS) and 
several Kazakh Test Site (KTS) explosions. Limited data from Lop Nor and Azgir shots 
provide additional support. Methods of analysis include narrow bandpass filtering, network- 
averaging, spectral ratios, and comparison of results with those from synthetics. Excellent 
agreement between observations and theory leaves no doubt regarding the contribution of Rg- 
to-S scattering to the low-frequency Lg from explosions. 

The high-frequency Lg appears to originate from explosion-generated cracks around the source 
region. A comparison of the phase ratios, Pg/Lg and Pn/Lg from an explosion nearly 
surrounded by earlier shots whose estimated damage zones intersect its shot point, with the 
phase ratios from the earliest of these shots suggests that the high frequency (about 8 to 16 Hz) 
S or Lg from explosions is due to the generation of new cracks created by a tamped explosion. 
Evidence supporting a cracking mechanism also comes from a comparison of deeper and 
shallower shots for their frequency dependence of Pg/Lg and Pn/Lg for shots at NTS and KTS, 
respectively, and from re-examination of local data for Salmon and the decoupled shot in its 
cavity, Sterling. 

These new concepts regarding the generation of Lg from explosions suggest useful methods for 
discriminating between earthquakes and explosions (including whether cavity decoupled or 
tamped). Detailed analysis of local and regional phases from known mine blasts and 
earthquakes in the Galilee region recorded at two stations of the Israel Seismic Network led to 
several interesting ideas for improvements in source discrimination at regional distances. The 
results obtained in this study significantly improve our understanding of the observed low and 
high frequency Lg from explosions. Knowledge of the physical basis of discriminants is 
important to CTBT monitoring because a physical understanding of how and why they work 
allows for the prediction of discrimination performance in different geologic settings where 
adequate seismic data may not be available. 



1. INTRODUCTION 

1.1       Research Objectives 

Seismic monitoring of the Comprehensive Test Ban Treaty (CTBT) requires robust regional 
discrimination capabilities, especially at low magnitudes. A clear understanding of the 
generation, propagation, and spectral characteristics of regional phases and their dependence 
on various near-source parameters is essential for improving the reliability and 
transportability of regional discriminants from one region to another. Lg is often the largest 
seismic phase from both explosion and earthquake sources recorded at regional distances so 
that, in some cases, Lg may be the only reliably observed phase on seismic records. 
Furthermore, numerous studies have demonstrated the usefulness of Lg for detection, source 
discrimination, and yield estimation of underground nuclear explosions. Ratio of S- to P- 
wave energy (or Lg/Pn and Lg/Pg for regional data) has so far been found to be the most 
promising regional discriminant for earthquakes and explosions. However, a full 
understanding of the generation of broadband Lg, essential for providing confidence in our 
ability to monitor the CTBT, is largely lacking. In this study, available data from a large 
number of explosions with known ground truth, recorded at both local and regional distances, 
have been analyzed to provide not only a better understanding of Lg and its dependence on 
various near-source parameters but also improved source discrimination and depth estimates. 
Use of broadband data provides information on the relative advantages of using low- or high- 
frequency data. One of the most difficult problems in treaty monitoring is the identification 
of decoupled shots. Differences in the mechanisms of seismic wave generation from 
decoupled and normal explosions have been investigated by analyzing broadband regional and 
closer-distance data from decoupled shots and others (such as overburied shots). The 
research results enhance understanding of the broadband characteristics of Lg and other 
regional phases and improve the transportability of regional discriminants from one region to 
another. 

1.2       Outline of Issues and Related Earlier Work 

1.2.1    Mechanism of Generation of Low-Frequency Lg from Explosions 

There is still no general agreement regarding the generation of low-frequency Lg from 
underground explosions. Spallation of near-surface layers over ground zero has been suggested 
as a significant source of Lg (e.g. Day and McLaughlin, 1991) but "no observational evidence 
convincingly demonstrates that spall has an important effect on regional seismic signals" 
(Patton and Taylor, 1995). Gupta et al. (1991a, 1992) provided observations and a theoretical 
model suggesting that the near-source scattering of explosion-generated Rg into S makes a 
significant contribution to the low-frequency Lg. This mechanism explains why the low- 
frequency Lg from explosions is so large that it destroys the discrimination capability of Pn/Lg 
amplitude ratios at frequency of about 1 Hz. Most evidence for this hypothesis came from 
analysis of regional data from nuclear explosions at both Nevada and East Kazakh test sites. 
Independent support for this mechanism also came from an examination of the source spectra 



of Lg from East Kazakh and Novaya Zemlya explosions by Israelsson (1992), and from 
analysis of Lg spectral ratios from Yucca Flat (NTS) explosions by Patton and Taylor (1995). 
Analyses of seismic data from the recent Non-Proliferation Experiment (NPE) and several NTS 
nuclear explosions by Walter et al. (1994) and Mayeda and Walter (1994) also found Rg-to-S 
scattering to have a dominant role in generation of the low-frequency Lg. Note that significant 
near-source Rg-to-S scattering can be caused by several factors such as: laterally varying 
structure of the Yucca Flat basin (Stead and Helmberger, 1988; Gaffet, 1995), near-surface 
velocity heterogeneity (Xie and Lay, 1994), and incomplete dissipation by anelastic attenuation 
(Jih, 1995). It is also interesting to note that Rg is known to be important in both near-source 
and near-receiver scattering of seismic phases {e.g., Gupta et al., 1990,1993). 

An explanation for the pronounced spectral nulls in the observed Lg spectra of several Yucca 
Flat (NTS) explosions was provided by Patton and Taylor (1995) by suggesting that the Rg 
waves must originate mainly from a CLVD source and the low-frequency null is due to an 
excitation null in Rg for a buried CLVD source. For a homogeneous semi-infinite medium, one 
can determine (e.g., Aki and Richards, 1980; pp. 315-335) that the CLVD spectral null 
frequency occurs approximately at V/(16 h) where V is the P-wave velocity and h is depth of 
the CLVD source (Poisson's ratio of 0.25 is assumed). This means that the null frequency is 
inversely proportional to source depth and directly proportional to medium velocity. For 
layered media, the CLVD null frequency in Rg for a given source depth can be computed and 
its comparison with the observed spectral nulls can be used for estimating source depth if one 
can establish a relationship between the centroid depth of the CLVD source and the explosion 
depth. Modeling of the observed Lg with the help of synthetics may also provide other source 
and near-source information. Rg is stronger for shallow sources such as mining explosions and 
rockbursts than for deeper sources such as earthquakes. An investigation of the spectral nulls 
and other characteristics of the low-frequency Lg from a large number of explosions with 
known ground truth is essential for understanding the scattering mechanism and its influence on 
source discrimination. 

1.2.2    High Frequency S or Lg from Explosions 

There appears to be lack of agreement regarding the generation of S (at short distances) or Lg 
(at regional distances) at higher (above 3 Hz) frequencies from explosions. Analysis of Salmon 
and Sterling data by Blandford and Woolson (1979) and Gupta et al. (1986) found relatively 
greater decoupling of Sterling for S or Lg than for P at higher frequencies. But Denny and 
Goodman's (1990) analysis of near-field data from Salmon and Sterling indicated no difference 
in frequency dependence of the phase ratio P/S at higher frequencies for tamped versus 
decoupled explosions. More recently, a comparison of data from several decoupled, overburied, 
and normally buried (tamped) explosions by Blandford (1995a) indicated significantly lower S 
than P for the decoupled and overburied shots, suggesting that the difference may be useful as a 
discriminant in this case. This analysis included Adushkin's (1992) data on P and S waves 
from Soviet tamped and decoupled shots in salt and showed the amplitude ratio P/S to be much 
greater for the decoupled shot (up to 50 times greater at 20 Hz). In order to explain these 
observations, Blandford (1995a, b) suggested the hypothesis that the S radiation comes from 
cracks created by the tamped explosion.  In theory, a decoupled shot will not cause cracks (a 



non-linear effect) because decoupling implies that the cavity boundary remains linear. 
Blandford's (1995a) analysis also indicated that the higher frequency S/P should decrease with 
shot depth because of greater overburden pressure which should inhibit cracking. However, an 
examination of Blandford's (1995a) and some other data by Murphy and Barker (1995) led 
them to conclude that the seismic characteristics of decoupled and coupled explosions are 
generally quite similar. According to Blandford (1995b), "the problem of high-frequency S 
generation from cracks is unsolved and there is no assurance that the high frequency S actually 
comes from such cracks". In the 1992 Report on the DARPA Seismic Identification Workshop, 
Blandford et al. (1992) recommended that the current research on the Lg/P discriminants be 
followed up with further empirical, experimental, and theoretical development of discriminants 
based on high-frequency S/P ratios. Earlier, by using the relatively high-frequency (3 Hz peak) 
Long Range Seismic Measurements (LRSM) instrument, Blandford et al. (1981) concluded that 
the S/P ratio would work well as a regional discriminant throughout the United States if 
averaged over several stations. More recently, higher frequencies have provided more reliable 
and robust discriminants than the more conventional discriminants based on the use of 
frequencies lower than about 5 Hz. In their study of discrimination between NTS explosions 
and earthquakes, Walter et al. (1995) noted improved performance at higher frequencies. 
Kennett (1989) provided theoretical arguments, supported by observations, that the Pn/Sn ratio 
would perform better as a source discriminant at higher frequencies. Another example is the 
regional discrimination study of explosions and earthquakes in the eastern United States by 
Kim et al. (1993) who observed significantly improved discrimination capability of the 
amplitude ratio P/Lg in the 5-25 Hz band than in the lower frequency bands. The use of high 
frequencies led to source discrimination without regard to whether the explosions were single- 
hole shots or quarry blasts. 

In their comparison of regional phases from NTS and KTS, Gupta et al. (1992) observed a large 
difference in the frequency dependence of Pn/Lg. They offered a possible explanation in terms 
of the large difference in the crustal structure and shot medium velocities of the two test sites. 
This explanation is based on the theoretical results of Frankel (1989) according to which the 
higher-frequency Lg originates from the pS phase and the shot-point velocity strongly 
influences the degree to which pS is trapped and contributes to Lg (see Gupta et al., 1992, 
Figure 19). Such a mechanism would, however, indicate no difference in frequency 
dependence of the phase ratio P/S at higher frequencies for tamped versus decoupled 
explosions. Walter et al. (1995) observed strong dependence of the higher-frequency Pn/Lg on 
gas porosity of the shot medium. Since gas porosity, medium velocity, and shot depth are 
strongly correlated (Walter et al, 1995), their results are in agreement with both Blandford's 
(1995a) hypothesis and Frankers (1989) theoretical results. It is important to distinguish 
between the two possible but distinct origins of high frequency S from explosions so that the 
scope and limitations of the regional discriminant S/P are clearly understood. 



2. ANALYSIS OF LOCAL AND REGIONAL DATA FROM NTS SHOTS 

2.1      Narrow Bandpass Filtering and Spectral Nulls 

A comprehensive study of the generation of Lg from underground nuclear explosions and its 
dependence on source and near-source parameters requires analysis of large amounts of data 
for which detailed ground truth information is available. This is mostly the situation for only 
the NTS explosions, although limited source information is now available for several Kazakh 
Test Site (KTS) explosions. Therefore, we first investigated regional and other data from 
NTS shots (Gupta and Zhang, 1996). The time-varying spectral characteristics of the observed 
seismic arrivals are examined by using a narrow bandpass filtering (NBF) technique which 
provides amplitudes for various values of group velocity and period. The NBF technique, 
described in detail by Seneff (1978), has been employed by several investigators (e.g., Kafka, 
1990) to study Rg from shallow sources. The group velocity curves are computed by using a 
moving zero-phase Gaussian filter. The period axis represents the central period of the filter 
and the velocity axis is simply epicentral distance/travel-time. The filter is applied at each 
period, the energy envelope computed, and the energy envelope curves are represented in the 
form of a two-dimensional matrix that is contoured. 

Digital, broadband data from several NTS explosions recorded at both local and regional 
distances are available from Los Alamos National Laboratory (Edwards and Baker, 1993; 
Taylor, 1993). NBF analysis was first carried out on local data from the nuclear explosion 
Metropolis (10 March 1990, m^ = 5.0, depth 469 m) at several recording stations, covering the 

distance range of 114 to 274 km (Edwards and Baker, 1993). Figure 1 shows the locations of 
Metropolis, field deployment stations DM, MV, LM, and HD at local and near-regional 
distances (Edwards and Baker, 1993), Sandia National Lab (SNL) stations TON, DRW, NLS, 
and LDS, and Lawrence Livermore National Lab (LLNL) stations ELK, MNV, LAC, and 
KNB. Using the vertical component data from the intermediate-period system (which records 
velocity at frequencies above the seismometer period of 5 sec), NBF results from four stations 
are shown in Figure 2 in which the vertical axis is group velocity. At the three short distances 
(Figures 2a, b, c), the direct fundamental-mode Rayleigh (which includes the short period Rg 
with group velocity less than 2 km/sec) is well recorded, but the NBF show a sharp drop in 
amplitude for the shorter periods. A possible explanation is that, within a few km of the source, 
the shorter-period Rg is scattered into S waves which travel with a velocity of about 3 km/sec, 
considerably higher than the velocity of the shorter-period Rg. A spectral null at a period of 
about 1.7 sec is observed in energy traveling with a velocity of about 1 to 4 km/sec, which 
includes not only Rg but also S-wave group arrivals such as Sg and Lg. At larger distances 
(Figure 2d), the spectral null is clearly observed in Lg, which has become the dominant phase 
because of greater attenuation with distance of Rg. The spectral null in the Rg-S wave group at 
shorter distances also appears in Lg at regional distances, indicating that the Rg spectrum is 
imprinted onto the scattered S waves. These results strongly support the importance of the 
CLVD source and the near-source scattering of explosion-generated Rg into S waves and 
subsequently into Lg, in agreement with the earlier study of Patton and Taylor (1995). 
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Figure 1 „ Location map of the underground explosion, Metropolis, and local and regional 
stations providing data used in this study. Stations MNV, KNB, LAC, and ELK belong to the 
LLNL network whereas TON, DRW, NLS, and LDS are part of the SNL network. 
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We also analyzed regional data from stations that recorded, in addition to Metropolis, two more 
Yucca Flat explosions, Texarkana (10 February 1989, mb = 5.2, depth 503 m) and Tulia (26 

May 1989, mb = 3.7, depth 396 m), separated by about 5 km (Figure 3). NBF analyses of the 

vertical component, long-period data, with peak response at slightly less than 0.1 Hz (Taylor, 
1993), from station TON are shown in Figure 4. Prominent spectral nulls in the S-wave group 
or Lg, with velocity of about 3 km/sec, are observed at periods of 1.5 and 1.3 sec for 
Texarkana and Tulia, respectively. NBF of Tulia recorded at DM also suggests a null at period 
of about 1.3 sec. The observed difference in null period for Texarkana and Tulia are likely to 
be due to several factors such as differences in their shot depths, medium velocities, and yield. 

2.2     Dependence of Spectral Nulls on Shot Depth 

The dependence of spectral null frequency on shot depth is investigated by analyzing Lg from 
22 Yucca Flat explosions (Table 1 and Figure 3) well recorded at all four broadband stations 
(MNV, KNB, LAC, and ELK) of the LLNL network. The sources of data in Table 1 were 
Carter (1992) and personal communications from Nancy Howard, Howard Patton, and Bill 
Walter (all at the Lawrence Livermore National Lab). Table 1 includes the work-point velocity 
(velocity of compressional waves over a small interval around the shot point) and the 
overburden velocity (average compressional-wave velocity between the shot point and the 
surface) both of which suggest considerable lateral variation. Using 51.2 sec long Lg windows, 
multitapered spectra were obtained for each of the four stations and corrected for attenuation by 
using the path-dependent Lg(Q) values in Patton (1988). Instrument response correction was 
not applied since the velocity response of the LLNL broadband stations is nearly flat from 
about 0.05 to 4.0 Hz and we are interested mainly in frequencies less than 3 Hz. Following 
Blandford (1981), who used network averaging for improved discrimination, we also obtained 
the network-averaged spectra by averaging (on log scale) the four single-station spectra. As an 
example, results for Metropolis are shown in Figure 5 which indicates distinct nulls at each of 
the four stations. The average null frequency at about 0.68 Hz appears stable, since the null 
frequencies show only a small variation from one station to another. Similar results based on 
use of the four SNL stations are shown in Figure 6 which again shows distinct nulls at each 
station, and the average null frequency is again 0.68 Hz. The consistency of spectral nulls in 
Figures 5 and 6 rules out the possibility of these nulls owing their origin to factors such as site 
effects or multipathing. 

Results from eight shots, arranged in order of decreasing shot depth and recorded at MNV, are 
shown in Figure 7a whereas the LLNL network-averaged spectra are shown in Figure 7b. As 
expected, spectral nulls in the network-averaged spectra are considerably more distinct and 
reliable than those from a single station. The network-averaged spectra were used to determine 
the spectral-null frequencies (included in Table 1). Both Figures 7a and 7b indicate an increase 
in the null frequency with decreasing shot depth, but the increase in null frequency is at first 
very small and becomes much larger for shallower depths. It should be noted that the null 
frequencies in Table 1 also indicate some regional variation for shots with nearly the same shot 
depth. For example, the individual station and average spectra for Paliza (Figure 8) show a 
spectral null at about 0.78 Hz, whereas those for Metropolis, with shot depth differing by only 3 
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Figure 3. Location map of 22 underground explosions used in this part of the study, including 
Metropolis (denoted by M), with numbers corresponding to those in Table 1. Locations of two 
additional shots Texarkana and Tulia (denoted by TEX and TUL, respectively), are also shown. 
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Table 1: Yucca Flats Explosions and Associated Lg Null Frequencies 

No Date Name 

mb 

USGS 

Shot 

Depth 

H(m) 

Work- 

Point 

Velocity 

(km/sec) 

Over- 

burden 

Velocity 

V 

(km/sec) 

Null 

Fre- 

quency 

f(Hz) 

CLVD 

Depth 

(m) 

h= 

V/(I6 0 

h/H 

I 06Sep 79 HEARTS 5.8 640 2.688 1.763 0.55 200 0.31 

2 22 May 80 FLORA 3.8* 335 1.704 1.257 0.85 92 0.28 

3 14 Nov 80 DAUPHIN 4.1 320 2.010 1.420 0.82 108 0.34 

4 IS Jan   81 BASEBALL 5.6 564 2.830 1.970 0.55 224 0.40 

5 16 Jul   81 PINEAU 3.3* 204 1.530 1.125 1.00 70 0.34 

6 04Sep 81 TREBBIANO 3.8* 305 1.850 1.465 0.80 115 0.38 

7 01 Oct 81 PALIZA 4.9 472 2.294 1.497 0.78 120 0.25 

8 11 Nov 81 TILC1 4.8 445 2.140 1.600 0.80 125 0.28 

9 12 Nov 81 ROUSANNE 5.3 518 2.410 1.580 0.60 165 0.32 

10 03 Dec 81 AKAVI 4.6 494 2.100 1.730 0.82 132 0.27 

11 28 Jan   82 JORNADA 5.9 640 2.405 1.695 0.53 200 0.31 

12 17 Apr 82 TENAJA 4.5 357 2.344 1.310 0.86 95 0.27 

13 10 Dec 82 MANTECA 4.6 413 2.250 1.610 0.90 112 0.27 

14 11 Feb 83 COALORA 4.1* 274 1.870 1.340 0.82 102 0.37 

15 26 May 83 FAHADA 4.4 384 2.070 1.500 0.82 114 0.30 

16 02 Aug 84 CORREO 4.7 335 2.085 1.305 0.84 97 0.29 

17 21 May 88 LAREDO 4.3 350 2.110 1.600 0.91 110 0.31 

18 30 Aug 88 BULLFROG 5.0 489 2.474 1.622 0.80 127 0.26 

19 13 Oct 88 DALHART 5.9 640 2.180 1.770 0.56 198 0.31 

20 15 Nov 89 MULESHOE 3.4* 244 1.790 1.330 0.87 96 0.39 

21 10 Mar 90 METROPOLIS 5.0 469 2.073 1.515 0.68 139 0.30 

22 21Jun   90 AUSTIN 4.0 351 1.920 1.370 0.85 101 0.29 

Mean h/H = 0.31 

* Local magnitude 
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LAC (304 km) 

ELK (409 km) 

AVERAGE 

Frequency (Hz) 

Figure 5.    Single-station and network-averaged Lg spectra, based on LLNL stations, for 
Metropolis, indicating a spectral null at frequency of about 0.7 Hz. 
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Figure 6.    Single-station and network-averaged Lg spectra, based on SNL stations, for 
Metropolis, again indicating a spectral null at frequency of about 0.7 Hz. 
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Figure 7. Spectra of Lg for eight explosions at Yucca Flat with shot depths as indicated, based 
on (a) data from a single station, MNV, and (b) network-averaged over all four LLNL stations, 
showing systematic increase in spectral null frequency (indicated by arrows) with decreasing 
shot depth; the increase in null frequency is very small at first but becomes larger for shallower 
depths. 
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Figure 8. Single-station and network-averaged Lg spectra, based on LLNL stations, for Paliza, 
indicating a spectral null at frequency of about 0.8 Hz. 
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m, have a spectral null at 0.68 Hz (Figures 5 and 6). The main reason for this variation is 
probably the presence of significant lateral variation in the subsurface as also shown by the 
large variation in both work-point and overburden velocities (Table 1). Note that the work- 
point velocity for Paliza is considerably greater than that for Metropolis although the 
overburden velocity for Paliza is slightly less than that for Metropolis. 

In order to understand the observed variation in spectral null frequency with depth of the Yucca 
Flat explosions, the wavenumber integration technique described by Herrmann and Wang 
(1985) was used for generating the Rg synthetics for vertically-oriented CLVD sources at 
various depths. The crustal velocity model of Patton and Taylor (1995, Table 1, SMU Velocity 
Model), was used and the source was assumed to be an impulse. The epicentral distance was 
taken to be only 20 km, since the Rg-to-S scattering should occur near the explosion source. 
The spectra of Rg for various depths of the CLVD source are shown in Figure 9 in which the 
spectra for source depth of 250 m appears to be identical with that in Patton and Taylor (1995, 
Figure 14). It is interesting to note that the increase in the null frequency is very slow at first 
but becomes much larger for shallower depths, remarkably similar to the observed variation in 
Figure 7. Figure 10 shows the dispersion curves for group and phase velocity of the 
fundamental-mode Rayleigh wave for the same Yucca Flat crustal model as used for the 
synthetics in Figure 9. The group velocity has a prominent minimum at about 0.5 Hz, which 
may be responsible for the peaks in the spectra of synthetics in Figure 9. 

The crustal model used in deriving the synthetics in Figure 9 comprises a top-most layer 600 m 
thick with P-wave velocity of 1.8 km/sec. The overburden velocities in Table 1 show a large 
variation (from about 1.1-2.0 km/sec) with mean value of about 1.5 km/sec. This means that 
there are large lateral variations in medium velocity, and the crustal model used in the 
synthetics is only approximately valid. This may also explain the difference between the 
shapes of the observed (Figure 7) and the theoretical (Figure 9) spectral nulls (the observed 
nulls for source depths of 250-150 m are much broader than the theoretical). It seems, 
however, that for frequencies below 2 Hz, the homogeneous half-space model is a fairly good 
approximation to the layered NTS model (Gupta et al, 1991b), so that a rough estimate of 
depth of the CLVD source for an explosion will be Y/(16 f) where V is its overburden velocity 
and f is its observed spectral null frequency. These estimates, included in Table 1, suggest that 
depth of the CLVD source for each explosion is on the average about 0.31, or one-third of its 
shot depth. Linear regression of V/f versus shot depth with zero intercept (Figure 11) indicates 
a correlation coefficient of 0.91 and a mean slope of 4.9, which again suggests the depth of the 
CLVD source to be, on the average, 4.9/16 or about one-third of the shot depth. 

2.3        Resonance in Rg and Spectral Peak in Lg from Yucca Flat Explosions 

Near-field displacement time histories from several nuclear tests in the Yucca Flat region have 
suggested vertical compressional-wave resonance with the resonance period independent of 
explosion yield and depth (Rodean, 1981). There is a considerable impedance mismatch 
between the Paleozoic rocks and the overlying alluvium and tuff. The wave period was found 
to be equal to four P-wave transit times between the free surface and the Paleozoic rock surface 
(Rodean, 1981). This resonance phenomenon may be related to Rayleigh wave generation by 
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1 2 3 

Frequency (Hz) 
12 3 4 

Frequency (Hz) 

Figure 9. Spectra of Rg synthetics for CLVD source at various depths for crustal velocity model 
of Yucca Flat used by Patton and Taylor (1995). The increase in the null frequency with 
decrease in source depth is extremely small at first but becomes much larger for shallower 
depths, similar to the observed variation in Figure 7. 
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Frequency (Hz) 

Figure 10. Dispersion curves for group (lower curve) and phase velocity for the fundamental 
Rayleigh mode for the Yucca Flat crustal structure used in Figure 9. Note the prominent 
minimum in group velocity at about 0.5 Hz. 
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SHOT DEPTH (km) 

Figure 11. Plot of V/f (where V is the overburden velocity and f is the Lg(NULL) frequency) 
versus shot depth for 22 explosions listed in Table 1. Linear regression, with zero intercept, 
shows a mean slope of 4.90 and correlation coefficient of 0.91. 
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explosions because, as noted by Hudson and Douglas (1975), when a sharp impedance contrast 
exists in a plane-layered model of the crust, the Rayleigh wave group velocity minimum in the 
fundamental mode occurs close to a period equal to four times the travel times of P-waves from 
the surface to the interface. An example of such resonance, as observed in the Fourier spectrum 
of displacement time history from a near-field velocity gauge for the Yucca Flat explosion, 
Starwort (26 April 1973), is shown in Figure 12a (after Rodean, 1981, Figure 3). Multi-tapered 
Lg spectra of Starwort, as recorded at the four broadband stations (MNV, KNB, LAC, and 
ELK) of the LLNL network, were obtained by using 51.2 sec long windows and correcting for 
attenuation (as in the earlier work, Section 2.2). These spectra clearly indicate distinct peaks at 
the same resonance frequency of about 0.5 Hz (Figure 12b) at each of the four stations as well 
as in the network-averaged spectrum, known to suppress path effects and enhance source 
effects (Blandford, 1981). As pointed out earlier (Section 2.2), the theoretical dispersion curve 
for group velocity of the fundamental-mode Rayleigh wave for the Yucca Flat crustal model 
(Figure 10) also has a prominent minimum at about 0.5 Hz. These results, showing exact 
match between the observed resonant frequency in Rg and the spectral peak in Lg and the 
theoretically predicted prominent minimum in group velocity, strongly support the hypothesis 
of near-source scattering of Rg into S and Lg, similar to that suggested by the low-frequency 
nulls in Lg from explosions (Patton and Taylor, 1995; Gupta et al., 1997). 

In order to investigate whether such a mechanism involving resonance and the scattering of Rg 
into S may be operating for other Yucca Flat explosions as well, we analyzed the low- 
frequency Lg from 32 Yucca Flat explosions (Figure 13) that were well recorded at all four 
stations of the LLNL network and included two overburied shots, Borrego and Techado (Patton 
and Taylor, 1995, Table 2). Most of these 32 shots are of course the same as those used earlier 
with locations shown in Figure 3. There is considerable variation in the thickness of low 
velocity sediments overlying the higher velocity Paleozoic layer in the Yucca Flat region (see, 
e.g. Gaffet, 1995, Figures 2 and 3). An approximately east-west vertical cross-section across 
the region (Gaffet, 1995, Figure 3) shows large lateral variations in the depth of the Paleozoic 
layer. The shot locations in Figure 13 include eight shots approximately along a vertical 
section, as shown in Gaffet (1995, Figure 3), in which the depth of the Paleozoic layer first 
gradually increases and then decreases. As shown in Figure 14, the network-averaged spectra 
of these eight shots indicate prominent peaks at frequencies that initially decrease with 
increasing depth of the Paleozoic layer and then increase as depth of the Paleozoic layer 
decreases. It seems therefore that the Lg spectra of these eight explosions show prominent 
peaks with spectral variations consistent with resonance and the scattering of Rg into S, similar 
to those observed for Starwort. 

Data for calculating the exact P-wave transit times between the free surface and the Paleozoic 
rock surface are not available for the Yucca Flat explosions. Furthermore, the large lateral 
variations in the sub-surface of the shot region makes the validity of a model consisting of P 
waves propagating through plane-parallel layers and leading to resonance somewhat 
questionable. However, one would expect generally larger transit times when the Paleozoic 
layer is deeper, so that the peak Lg or Lg(MAX) period should generally increase with depth of 
the Paleozoic layer. This does seem to be true, as demonstrated in Figure 15 by a plot of the 
observed Lg (MAX) period versus depth of the Paleozoic layer for 30 Yucca Flat explosions 
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Figure 12. (a) Fourier spectrum of near-field data from Starwort indicating resonance at 
frequency of about 0.5 Hz. (b) Single-station and network-averaged Lg spectra, based on 
LLNL stations, for Starwort, each indicating a spectral peak at about 0.5 Hz. 

21 



■116.15* 

37.15* 

37.1' 

37.05   - 

37* 
-116.15* 

-116.1 115.95* 

-116.1' -116.05 -116 

- 37.15* 

37.1' 

- 37.05' 

Figure 13. Location map of 32 Yucca Flat explosions used in study of spectral peaks in Lg, 
including eight (shot names given in Figure 14) approximately along a vertical profile 
(indicated by O) and two overburied shots, Borrego (B) and Techado (T). 
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Figure 14. Network-averaged Lg spectra of eight shots, located approximately along a vertical 
section, showing prominent peaks (marked by arrows pointing down) at frequencies that appear 
to correlate with depth of the Paleozoic layer. The explosion names are given along with their 
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Figure 15. Plot of the observed Lg (MAX) period versus depth of the Paleozoic layer for 30 
Yucca Flat explosions. Linear regression with zero intercept, based on data from 28 shots 
numbered as in Table 2 (Borrego (B) and Techado (T) are excluded), shows correlation 
coefficient of 0.82 and mean slope of 2.34. Data points for shots Dalhart and Rousanne, closest 
to Borrego and Techado, respectively, are denoted by 25b and 16t, respectively. 
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(Table 2) for which ground truth (including depth of the higher-impedance Paleozoic layer) was 
known. Linear regression with zero intercept, based on data from 28 shots (Borrego (B) and 
Techado (T) are excluded), shows a correlation coefficient of 0.82. It seems, therefore, that the 
low-frequency peaks in the Lg spectra of Yucca Flat explosions are due to resonance and 
scattering of Rg into S and Lg. 

The same network-averaged spectra as used for determining the spectral peaks in Lg were also 
used to observe the Lg null frequencies for the same 30 explosions. Linear regressions with 
zero intercept, based on data from 28 shots, on plots of Lg(NULL) period versus shot depth 
(Figure 16) and V/f(NULL) versus shot depth (Figure 17) indicate correlation coefficients of 
0.89 and 0.95, respectively. As expected, the results for the mean slope in Figure 17 are similar 
to those in Figure 11, again indicating that the depth of the CLVD source is about one-third of 
its shot depth, and a determination of the Lg null frequency of an explosion may provide an 
estimate of its shot depth. 

It is interesting to note that the observed values of both Lg(MAX) and Lg(NULL) periods for 
the two overburied shots, Borrego and Techado, in Figures 15, 16, and 17 appear to be smaller 
than those expected from the mean trend of the remaining 28 shots. The shots closest to 
Borrego and Techado (Figure 13) are Dalhart (No. 25) and Rousanne (No. 16), and the path 
effects for these two pairs should be almost identical. A comparison of both Lg(MAX) and 
Lg(NULL) periods in Figures 15, 16, and 17 for the two pairs of closely located overburied and 
"normal" shots indicate significant differences. For example, the single-station and network- 
averaged low-frequency Lg spectra of Rousanne and Techado, shown in Figure 18, indicate 
both Lg(MAX) and Lg(NULL) frequencies of Rousanne to be somewhat smaller than those of 
Techado. A likely explanation is that, as compared to "normal" explosions, the overburied 
shots should be associated with relatively higher medium velocities because of relatively 
reduced degree of fracturing and other non-linear effects in their source regions. Note also that 
Figure 18 shows the Lg of Rousanne to be relatively rich in low (less than about 2 Hz) 
frequency energy as compared to the Lg of Techado, probably due to relatively stronger 
explosion-generated Rg from Rousanne. 

3. ANALYSIS OF REGIONAL DATA FROM EXPLOSIONS IN OTHER REGIONS 

3.1       Spectral Nulls in Lg from Kazakh Explosions 

Regional data from the Soviet underground nuclear explosion of the Joint Verification 
Experiment (JVE, 14 September 1988, mb = 6.03) are available at the three Natural Resources 

Defense Council (NRDC) stations, KSU, KKL, and BAY. These three stations lie at epicentral 
distances of about 160 km east, 255 km southwest, and 255 km northwest, respectively. Details 
of the experiment, sample records, and instrumentation have been provided by Priestley et al. 
(1990). The long- and short- period seismographs consist of 15 and 1 sec free period 
seismometers, respectively. Results of NBF analysis of the vertical component long-period 
data from KKL and BAY and short-period data (after integration using the trapezoidal rule) 
from   KSU   (the   long-period   data   at   KSU   had   problems;   William   Walter,   personal 
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Table 2: Yucca Flats Explosions and Associated Lg Null and Peak Frequencies 

No. Date Name Shot 

Depth 

(m) 

Depth to 

Paleozoic 

Layer 

(m) 

Over- 

burden 

Velocity 

(km/sec) 

Null 

Frequency 

(Hz) 

Peak 

Frequency 

(Hz) 

1 26 Apr 73 STARWORT 564 960 1.646 0.63 0.48 

2 20 Dec 75 CHIBERTA 716 981 1.840 0.57 0.38 

3 08 Dec 76 REDMUD 427 825 1.480 0.80 0.64 

4 05 Apr 77 MARSILLY 690 970 1.716 0.54 0.45 

5 04 Aug 77 STRAKE 518 824 1.500 0.77 0.55 

6 09 Nov 77 SANDREEF 701 1085 1.853 0.54 0.42 

7 23 Feb 78 REBLOCHON 658 1000 1.673 0.53 0.38 

8 27 Sep 78 DRAUGHTS 442 640 1.534 0.75 0.61 

9 29 Aug 79 NESSEL 464 975 1.505 0.64 0.52 

10 06 Sep 79 HEARTS 640 1071 1.763 0.55 0.43 

11 24 Oct 80 DUTCHESS 427 675 1.573 0.89 0.67 

12 14 Nov 80 DAUPHIN 320 480 1.420 0.82 0.68 

13 16 Jul   81 PINEAU 204 695 1.125 1.00 0.69 

14 01 Oct 81 PALIZA 472 700 1.497 0.78 0.55 

15 11 Nov81 TILCI 445 719 1.600 0.84 0.64 

16 12 Nov 81 ROUSANNE 518 779 1.580 0.60 0.48 

17 03 Dec 81 AKAVI 494 785 1.730 0.82 0.62 

18 28 Jan   82 JORNADA 640 860 1.695 0.53 0.42 

19 17 Apr 82 TENAJA 357 625 1.310 0.86 0.65 

20 10 Dec 82 MANTECA 413 737 1.610 0.90 0.70 

21 26 May 83 FAHADA 384 601 1.500 0.82 0.62 

22 02 Aug 84 CORREO 335 620 1.305 0.84 0.65 

23 30 Aug 84 DOLCETTO 366 652 1.410 0.88 0.70 

24 27 Sep 85 PONIL 366 678 1.455 0.94 0.65 

25 13 Oct 88 DALHART 640 860 1.770 0.55 0.43 

26 10 Feb 89 TEXARKANA 503 665 1.720 0.81 0.66 

27 15 Nov 89 MULESHOE 244 373 1.330 0.87 0.73 

28 10 Mar 90 METROPOLIS 469 945 1.515 0.68 0.49 

OVERBURIED SHOTS 

* 29 Sep 82 BORREGO 564 740 1.860 0.80 0.62 

* 22 Sep 83 TECHADO 533 910 1.610 0.71 0.54 
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Figure 16. Similar to Figure 15 showing a plot of Lg(NULL) period versus shot depth for the 
same 30 explosions. Linear regression with zero intercept, based on data from 28 shots, shows 
a correlation coefficient of 0.89 with mean slope of 2.86. 
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Figure 17. Similar to Figure 15 showing a plot V/f(NULL), where V is the overburden velocity 
and f is the Lg(NULL) frequency, versus shot depth for the same 30 explosions. Linear 
regression with zero intercept, based on data from 28 shots, shows a correlation coefficient of 
0.95 with mean slope of 4.63. 
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communication) are shown in Figure 19. Severe attenuation of Rg for periods less than 1.2-1.3 
sec and build-up of the shorter-period S arrivals, suggesting the scattering of shorter-period Rg 
into S or Lg, can be observed in the three Figures 19a, b, c. The group velocity of the scattered 
S wave is higher than that of Rg, indicating that scattering must take place near the source 
region. In each figure, a spectral null in Lg (velocity 3.0-3.5 km/sec) is observed at a period of 
about 0.7 sec. 

Regional data from the JVE and several other East Kazakh nuclear explosions are also available 
at the broadband station WMQ (CDSN network) located at a distance of about 950 km from 
KTS. Spectral ratios of Lg from the JVE and the much smaller explosion of 12 March 1987, 
87071 (niL = 5.31), both recorded at WMQ (vertical component) so path effects are minimized, 

are shown in Figure 20a for Lg windows of 76.8, 51.2, and 25.6 sec, with seven, five, and 
three-point smoothing, respectively. Each of the three plots shows a spectral null at about 1.4 
Hz, which corresponds to the null at period of 0.7 sec observed in the NRDC regional data. 
Furthermore, the plots suggest a maximum at a frequency of about 1.8 Hz, which may be due to 
the shallower CLVD source associated with Lg from the smaller explosion, 87071. Spectral 
ratios of Lg from the explosion of 3 April 1987 (87093), with mi = 6.12 (somewhat larger and 

presumably deeper than the JVE) and the smaller explosion 87071, shown in Figure 20b, also 
indicate a spectral null at frequency of about 1.1 Hz, likely due to the CLVD source associated 
with the larger explosion 87093. Spectra of Lg (51.2 sec long windows and five-point 
smoothing) from seven explosions from the southwest region of KTS, recorded at WMQ and 
arranged in order of decreasing m^, with Q correction from Xie et dl. (1996), are shown in 

Figure 20c. The spectral nulls in Figure 20c, as indicated by arrows and selected on the basis of 
their prominence and consistency with those in Figures 20a and 20b, suggest a systematic 
increase in the Lg null frequency with decreasing m^ that should be associated with decreasing 

shot depth, and, therefore, with decreasing depth of the CLVD source. 

As with the Yucca Flat explosions, synthetics were generated for vertically-oriented CLVD 
sources at several depths (Figure 21) by using the crustal structure model of Harvey (1993, 
Figure 15) who inverted full waveforms for structure and source parameters by using regional 
data recorded in Eastern Kazakhstan. In this model, the crust is 50 km thick and consists of 
nine layers with P-wave velocities varying over the range of about 4.60-7.15 km/sec. Note that 
Harvey's (1993) results are based on data collected at the NRDC station, KKL, about 250 km 
west-southwest of the Kazakh test site and that his observed Rg dispersion curves show 
significant (about 20%) lateral variation in group velocity (see his Figure 8). The synthetics in 
Figure 21 indicate that a spectral null at 1.4 Hz, as observed for the JVE, corresponds to a 
CLVD depth of about 200m. Unfortunately, the shot depths of Kazakh explosions used in this 
study are not known, although the JVE is believed to have a shot depth of about 600 m, or 
about three times the depth of the associated CLVD source. 
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Figure 19. Narrow bandpass filtered records of the Soviet JVE shot of 14 September 1988 at 
the NRDC stations (a) KKL, (b) BAY, and (c) KSU, each indicating strong attenuation of Rg 
for periods less than about 1.2 sec and a spectral null in Lg at a period of about 0.6 to 0.7 sec. 
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Figure 20. Lg spectral ratios for Kazakh shots recorded at WMQ (a) 88258(JVE)/87071 and 
(b) 87093/87071 for window lengths of 76.8 sec (top), 51.2 sec (middle), and 25.6 sec 
(bottom). Each of the three plots in (a) shows a spectral minimum at about 1.4 Hz and a 
maximum at about 1.9 Hz; plots in (b) indicate a spectral minimum at about 1.1 Hz. (c) Spectra 
of Lg (window length 51.2 sec) for seven Kazakh explosions suggesting a systematic increase 
in null frequency with decreasing m. . 
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Figure 21. Spectra of Rg synthetics for CLVD source at four different depths for crustal 
velocity model of Eastern Kazakh derived by Harvey (1993). Note the steady increase in null 
frequency with a decrease in source depth, similar to the observations in Figure 20c. 
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3.2 Chinese Nuclear Tests at Lop Nor 

There is considerable interest in nuclear explosions at the Lop Nor test site because, in contrast 
with the U.S., Russian, and French nuclear test sites, this test site has been active as recently as 
July 1996. Analysis of Lg from several Lop Nor shots recorded at stations belonging to the 
Kyrghizstan Network (KNET) showed distinct low-frequency nulls at most stations (Gupta, 
1996). Results from 5 shots recorded at the vertical-component broadband high gain (20 
samples/sec) KNET station AAK, at epicentral distances of about 1200 km, are shown in 
Figure 22.  The following five shots were used:  (1) May 21, 1992 (92142), mb = 6.5, (2) 25 

September 1992 (92269), mb = 5.0, (3) 5 October 1993 (93278), mb = 5.9, (4) 15 May 1995 

(95135), mb = 6.1, and (5) 17 August 1995 (95229), mb = 6.0.   For AAK, the instrument 

response is flat to ground velocity between 0.004 and 6 Hz. The individual vertical-component 
Lg (window length 51.2 sec) spectra, with Q correction from Xie et al. (1996), shown in Figure 
22a, and the spectral ratios (Figure 22b) indicate the same distinct spectral nulls and a general 
increase in frequency with decrease in magnitude. Since smaller magnitude explosions are 
generally associated with shallower shot depths, these results are similar to those from the 
Yucca Flat explosions (Figure 7) and support the hypothesis of the scattering of Rg, originating 
from a CLVD source, contributing to the low-frequency Lg. 

Matzko (1994) provided a detailed description of the geological structure and rock types at the 
test site. According to him, the largest shot of 21 May 1992 was emplaced in a shaft over 900 
m deep and had a yield of about 1 megaton. Furthermore, the nuclear shots are fired in either 
vertically drilled shafts or horizontal tunnels, but there is hard rock coupling in both areas and 
the Lop Nor test site is, in several respects, more similar to the KTS than the NTS. This 
provides a possible explanation for the similarity of the observed Lg null frequencies at Lop 
Nor test site (Figure 22) and the KTS (Figure 20) for shots with similar magnitudes. 

3.3 Azgir PNE at ILPA Array 

Regional data from a Soviet Peaceful Nuclear Explosion (PNE) in salt on 18 December 1978 
(mb = 5.9) at Azgir (north of the Caspian Sea) are available at the ILPA array (Figure 23); see 

Grant et al. (1996). The vertical-component waveforms at two locations, IR1 and IR7 show 
considerably less energy in Lg than in Sn. A possible reason for the diminished Lg is the 
presence of mostly ocean-like path through the Caspian Sea. Spectra of Lg and Sn windows, 
each 51.2 sec long and starting at velocities of 3.5 and 4.3 km/sec, respectively, are also shown 
in Figure 23. Not only the Lg spectra but also the Sn spectra indicate a prominent spectral null 
at a frequency of about 1.1 Hz. It appears, therefore, that the source of the low frequency 
energy in the large Sn phase is the same as in Lg and the low-frequency energy in both phases 
originated from the near-source scattering of explosion-generated Rg into S. 
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Figure 22. Results from five Lop Nor shots recorded at AAK, about 1200 km west of the 
test site. Both (a) spectra of Lg (window length 51.2 sec) and (b) spectral ratios indicate the 
same spectral nulls (indicated by arrows) and a general increase in null frequency with 
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Figure 23. Waveforms and spectra of Lg and Sn from the Azgir PNE (78352) recorded at 
two ILPA sensors. The four spectra and their average indicate a distinct null at about 1.1 
Hz, perhaps due to near-source scattering of explosion-generated Rg into S which contributes 
to both Sn and Lg. 

36 



4. HIGH FREQUENCY S AND Lg FROM NUCLEAR EXPLOSIONS 

4.1 Importance of High-Frequency S or Lg 

It is important to understand the origin of high frequency S from explosions so that the scope 
and limitations of the regional discriminant Lg/P, often reported to perform better at higher 
frequencies, are clearly known. The high frequency S or Lg from explosions may be due to the 
generation of new cracks generated by a tamped explosion (Blandford, 1995a, b), but the 
evidence presented so far has probably not been fully convincing (Murphy and Barker, 1995). 
We therefore test Blandford's (1995a, b) hypothesis by examining data from several sources. 

4.2 Comparison of Seismic Data from Tamped and Decoupled Explosions 

4.2.1 Analysis of Local Data from Azgir Tamped and Decoupled Explosions 

We analyzed local data, made available by Adushkin et al (1992), from a pair of explosions 
detonated in a salt dome. On 22 December 1971, a 64-kt tamped explosion was fired at a depth 
of 987 m and, on 29 March 1976, a smaller (about 8 kt) explosion was detonated in the cavity. 
Since we are interested in a comparison of P and S spectra, it is important that both P and S 
phases be available for both events. With this criterion, data from only one station, AZG08, 
were found to be suitable. Bandpass filtering of corrected data from this station by Blandford 
(1995a) showed the amplitude ratio P/S to be much larger for the decoupled shot. Our analysis 
of the same data, showing spectral ratios P/S for the two shots (Figure 24a) and 
coupled/decoupled P and S (Figure 24b) indicate significantly larger S than P for the coupled 
shot at higher (above 5 Hz) frequencies. These results are in agreement with Blandford's 
(1995a, b) hypothesis that the higher frequency S comes from cracks generated by the tamped 
explosion because a decoupled shot will not cause cracks (a non-linear effect). 

4.2.2 Re-examination of Salmon/Sterling Data at Local Distances 

Analysis of Salmon and Sterling data recorded at three common stations (10S, 20S, and PL- 
MS) by Blandford and Woolson (1979) and Gupta et al. (1986) found relatively greater 
decoupling of Sterling for S or Lg than for P at higher frequencies. Murphy and Barker (1995) 
also analyzed Salmon and Sterling data at several local distances, including 10S (16 km), 20S 
(32 km), and PL-MS (27 km). They found that the filtered signals at 20S and PL-MS showed 
larger S/P ratios for Salmon than for Sterling, in agreement with Blandford's hypothesis. 
However, their results for 10S, based on recording from a single sensor out of a cluster of 
closely spaced 12 instruments which recorded both Salmon and Sterling, did not show any 
obvious differences between the filtered signals for the two events (see Murphy and Barker, 
1995, Figure 19). 

In this study, we examined all available instruments providing data for both Salmon and 
Sterling at 10S; only eight (numbered 5 through 12) were found to be suitable. The raw 
(unfiltered) data for the two events are shown in Figures 25 through 28 for these eight vertical- 
component sensors. Note that although the eight sensors are close to each other, the waveforms 
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Figure 24. Spectral ratios derived from the coupled (tamped) and decoupled Azgir explosions 
of 22 December 1971 and 29 March 1976, respectively recorded at a common station at a 
distance of about 18 km. Since both figures (a) and (b) indicate significantly larger S than P for 
the coupled shot at higher (above 5 Hz) frequencies, these results support Blandford's 
hypothesis regarding the generation of high frequency S from explosions. 
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for each event show significant differences from one sensor to another. A possible reason is 
site effects. In Figures 26 and 28, the data from Sensor 9 are the same as those used by Murphy 
and Barker (1995, Figure 19). The beginning of the P and S windows are the same used by 
Murphy and Barker (1995) and vertical lines have been drawn to indicate window lengths of 1 
and 2 sec for P and S, respectively. Bandpassed outputs for frequency ranges of 12-16, and 16- 
20 Hz for the two events (Salmon in red and Sterling in black) are shown in Figures 29 through 
32, in which the peak amplitudes in the P windows for the two events have been adjusted to be 
the same. This means that amplitudes in only the S windows need to be examined for 
comparing the high frequency amplitudes for the two events. Results from Sensor 9 indicate no 
significant differences in the S windows for the two sources, as noted by Murphy and Barker 
(1995). However, most other sensors (especially Sensors 6, 7, 8 in Figure 29, Sensors 11 and 
12 in Figure 30, and Sensor 12 in Figure 32) show the S wave peak amplitudes to be 
significantly larger for Salmon than for Sterling. Note that results from none of the 8 sensors 
show the S wave amplitudes for Salmon to be smaller than for Sterling. It seems therefore that 
most data from 10S show results consistent with Blandford's hypothesis. It will be interesting 
to find out in the future why different sensors show considerably different results; possible 
reasons are site effects and radiation patterns, which are generally believed to be more variable 
at higher frequencies. 

4.3   High Frequency Lg from Nuclear Explosions Recorded at Regional Distances 

4.3.1    Analysis of Regional Data from NTS Explosions 

We examined the origin of high frequency S from explosions by analyzing the regional phases 
Pn, Pg, and Lg from several closely-located and other Yucca Flat (NTS) explosions recorded at 
common stations so that path effects are minimized. Figure 33 shows locations of over 100 
explosions, including 13 which provided high frequency data with fairly good signal/noise ratio 
at the four stations of the LLNL network. Estimated damage zones for these 13 and earlier 
shots with epicenters within 500 m of them are indicated by circles around their epicenters. The 
radius of damage zone is assumed to be three times the explosion cavity radius; a conservative 
estimate on the basis of Johnson's (1997) study of the damage zone associated with the 
chemical explosion (an overburied shot) of the Non-Proliferation Experiment. Cavity radii for 
various shots are calculated by using the empirical relationships developed for NTS shots by 
Closmann (1969). As shown in Figure 33, at least two large earlier shots were so close to 
Dalhart that their damage zones probably produced a highly fractured region around its shot 
point which could have prevented or at least inhibited the growth of new cracks, presumed to be 
responsible for the higher frequency S. A comparison of the spectral ratios Pg (12.8 sec)/Lg 
(25.6 sec) and Pn (3.2 sec)/Lg (25.6 sec) from Dalhart, with those from the earliest shot Hearts, 
is shown in Figure 34. Nearly all stations and their average show significant differences at 
higher (above 8-10 Hz) frequencies. Similar comparison between Hearts and Baseball, with 
their damage zones well separated from each other, showed no such differences. A possible 
explanation for the relative deficiency of higher frequency Lg from Dalhart is lack of new 
explosion-generated cracks because its shot-point lies within the previously damaged zone. 
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Figure 33 Location map of over 100 explosions in the northern Yucca Flat region showing the 
estimated damage zones for the Yucca Flat explosion, Dalhart and many other shots. Dalhart is 
nearly surrounded by at least two (probably three) large earlier shots with their damage zones 

intersecting its shot point. 
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Evidence supporting a cracking mechanism also comes from a comparison of deeper and 
shallower shots for their frequency dependence of Pg/Lg. We analyzed the LLNL network data 
from nine explosions, obtained by excluding the three overburied shots and Dalhart from the 13 
explosions specified by name in Figure 33. Linear regression of average Pg/Lg versus shot 
depth for several frequency passbands, each about 2 Hz in width, were carried out; an example 
is shown in Figure 35a. The average values for depths of 640 and 300m, obtained from the 
linear regressions, were used to obtain a plot of log average Pg/Lg versus center frequency. As 
suggested by the results in Figure 35b, differences in Pg/Lg due to variation in shot depth are 
larger for both high (greater than 6 Hz) and low (less than 4 Hz) frequencies. The increasing 
difference at higher frequency may be due to the generation of high frequency S by explosion- 
generated cracks that are inhibited by overburden pressure and contribute more to the higher 
frequencies, as suggested by Blandford (1995a,b). The increase in Pg/Lg for lower (less than 4 
Hz) frequencies is probably due to Rg being larger for shallower depths, playing a more 
dominant role at lower frequencies, and the scattering of Rg into S and Lg. 

4.3.2 Results from Analysis of High Frequency Data from Station NLS 

We also analyzed the high frequency (50 samples/sec) data from Dalhart, Hearts, and several 
other Yucca Flat explosions recorded at the station NLS belonging to the SNL network. The 
results are shown in Figures 36 and 37. The results in Figure 36 are obtained by averaging the 
spectral ratios over successive frequency bands about 4 Hz wide. The Pn, Pg and Lg windows 
are 5.12, 10.24 and 20.48 sec, respectively, whereas Lgl denotes the first 10.24 sec of the Lg 
window and Lg2 the next 10.24 sec. The results are similar to those in Figure 34; the relative 
deficiency of higher frequency Lg from Dalhart is again probably due to lack of new explosion- 
generated cracks because of its shot point lying within the damage zones of earlier shots 
including Hearts. It is interesting to note that a comparison of spectral ratios Pg/Lg 1 and 
Pg/Lg2 shows somewhat larger higher-frequency separation between Dalhart and Hearts for the 
later Lg window. A possible reason for this is that most of the higher frequency S generated by 
the creation of new cracks is somewhat delayed. 

The NLS data are also used to obtain a comparison of deeper and shallower shots for their 
frequency dependence of Pg/Lg by using data from ten Yucca Flat explosions. The results, 
shown in Figure 37, are similar to those in Figure 35, and once again support Blandford's 
(1995a,b) hypothesis regarding the influence of overburden pressure on the generation of new 
cracks which contribute to the higher frequency S. 

4.3.3 Analysis of Regional Data from Kazakh Explosions 

High-frequency data from 14 KTS shots recorded by the short-period (sampling rate 40 
samples/sec), vertical-component instrument at WMQ were analyzed to obtain a comparison of 
deeper and shallower shots for their frequency dependence of Pn/Lg. Most of these explosions 
were the same as used in Gupta et al. (1992, Table la). Since the shot depths for KTS shots are 
not known, the comparison actually involved average values for large and small magnitude 
shots, assuming that the larger magnitude shots are deeper than the smaller magnitude shots. 
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Following a procedure similar to that used for the Yucca Flat explosions (Section 4.3.1), results 
shown in Figure 38 were obtained. The differences in Pn/Lg due to variation in magnitude and 
therefore in shot depth are larger for higher (greater than 5 Hz) frequencies. These results are 
therefore similar to those from Yucca Flat explosions (Figures 35 and 37) and support 
Blandford's (1995a,b) hypothesis. 

5. APPLICATION TO REGIONAL DISCRIMINATION 

5.1 Scattering of Rg into S and Regional Discrimination 

Most regional discrimination methods are based on the differences in the frequency content of 
the seismic waves radiated from the source region of explosions and earthquakes. Several 
recent studies (Gupta et al, 1992; Patton and Taylor, 1995; Gupta and Wagner, 1997; Gupta et 
al, 1997) have provided new insight into the generation of Lg from explosions by suggesting 
that the low-frequency part of the Lg spectra is mainly due to the near-source scattering of 
explosion-generated Rg into S. The scattering mechanism (Rg-S-Lg) not only explains the 
spectral characteristics (such as peaks and nulls) of the low-frequency Lg from explosions 
(Gupta and Wagner, 1997) but also provides a good explanation of why the discriminant P/Lg 
may work at higher (above about 3 Hz) frequencies but fail at low frequencies. Since most 
regional discriminants make use of Lg, an improved understanding of this prominent regional 
phase should be useful not only for improving the performance of several existing regional 
discriminants but also for exploring the possibility and effectiveness of new discriminants. 

Most geological sites where explosions and earthquakes may occur will have crustal 
heterogeneities, including lateral variations, which will generally diminish with depth. Since 
the explosions generally occur at depths that are shallower than those for earthquakes, they will 
generate much larger Rg, a considerable portion of which will be scattered into both S and P 
(more into S than P). The scattering process will contribute low frequency energy to both S and 
P from explosions because Rg has dominant energy only for low frequencies (less than about 2- 
3 Hz). Moreover, since explosions directly generate P waves, the influence of Rg scattering 
will generally be more distinct and observable on the spectra of S or Lg rather than on the 
various P phases (such as Pn or Pg). 

5.2 Evaluation of Discriminants Using Galilee Ground-Truth Dataset 

In order to test the discrimination potential of these concepts, we analyzed data from known 
mine blasts and earthquakes in the Galilee region recorded by the Israel Seismic Network 
(Gitterman et al., 1996; Grant et al., 1997). The analysis was restricted to events well recorded 
at common stations so that the influence of recording site effects is minimal. A set of 20 events 
(10 mine blasts and 10 earthquakes, numbered 1-10 and 11-20, respectively; Figure 39), 
recorded at the station MML, were found to be suitable for this purpose. The instrument used 
at MML is the short-period Teledyne-Geotech S-13 and the available signals, shown in Figures 
40 and 41, had been bandpass filtered (0.2 to 12.5 Hz). The source-receiver distances varied 
from about 20 to 50 km, so that the first arrival was always Pg. 
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Figure 39. Location map of 20 events, including 10 quarry blasts (numbered 1 through 10) 
and 10 earthquakes (numbered 11 through 20) recorded at station MML. The recording 
station PRNI is also shown. 
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Multi-tapered spectra were obtained for the initial Pg (5.12 sec) and Sg (10.24 sec) and a 
correction for noise was applied by using a sample of noise before the onset of Pg. The 
amplitude ratios Pg/Sg were obtained by using only those data points for which the signal/noise 
power ratio was at least 1.5. Results (in log units) for each of the 20 events for the frequency 
band of 1-3 Hz (center frequency 2 Hz) are shown in Figure 42a in which the mean values for 
the ten quarry blasts and ten earthquakes are also indicated along with one standard deviation 
error bars. There is considerable overlap between the Pg/Sg values for the two types of 
sources. Combined results for the mean values for nine frequency bands, each 2 Hz in width, 
and with center frequencies at 2, 3, 4, 5, 6, 7, 8, 9, and 10 Hz are shown in Figure 42b which 
indicates rapid increase in the Pg/Sg ratio with frequency for the quarry blasts. This suggests 
that for the quarry blasts, the Pg amplitude is increasing with frequency and/or the Sg amplitude 
is decreasing with frequency. Earlier work based on spectral observations of Lg from nuclear 
explosions (Gupta et al., 1992) would suggest that the rapid decrease in Sg amplitude with 
frequency is mainly responsible for the increase in Pg/Sg with frequency. The increase in 
Pg/Sg with frequency for earthquakes in Figure 42b is not as rapid so that there appears to be 
significant separation between the mean values for quarry blast and earthquake populations at 
both low and high frequency ends. 

Considering the nature of Rg-to-S and Rg-to-P scattering as discussed earlier and the results in 
Figure 42, several other phase and spectral ratios for various frequency bands were computed 
for both the explosion and earthquake populations; the results are shown in Figures 43 through 
46. The results in Figure 43 are similar to those in Figure 42 except that the two frequency 
ranges have been somewhat enlarged for greater stability. Note that there is larger separation 
between the mean values of Pg/Sg for the explosion and earthquake populations for the 
frequency band of 1-4 Hz (-0.21 log units) than for the higher frequency band of 8-12 Hz (0.13 
log units). Figure 44 is based on a comparison of Pg/Sg within low (1-4 Hz) and two high 
frequency bands (8-12 Hz and 6-10 Hz) and shows somewhat better separations between the 
mean values (-0.34 log units and -0.28 log units) than those in Figure 43. Nevertheless, both 
Figures 43 and 44 show considerable overlap between data points belonging to the two 
different sources. 

A comparison of amplitudes within a single phase (Pg or Sg) between the low and high 
frequency bands was also made by first removing the instrument response. Results based on a 
comparison of 1-4 Hz and 8-12 Hz amplitudes, shown in Figure 45, indicate surprisingly large 
separation between the two populations (0.67 and 0.98 log units for Pg and Sg, respectively). 
Moreover, the data points for the two sources are completely separated from each other, except 
for Event No. 7 for Pg (Figure 45a). A likely explanation is that both Pg and Sg from 
explosions at these rather small epicentral distances are rich in low frequencies because of large 
contributions from the scattering of Rg into both P and S. Results in Figure 46, based on the 
mean slope over the frequency range of 1-9 Hz for the Pg and Lg spectra (corrected for 
instrument response), also show the two populations as well separated, especially for Sg, 
similar to the results in Figure 45. 

Investigations of S or Lg coda have been found to be useful for source discrimination and 
related studies because of their greater stability as compared to the direct S (e.g. Su et al., 1991; 
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Figure 42. (a) Log Pg (5.12 sec)/Sg (10.24 sec), averaged over 1-3 Hz, for 10 quarry blasts 
and 10 earthquakes. Mean values for the two different types of sources are indicated along 
with one standard deviation error bars, (b) Mean values of Pg/Sg for quarry blasts and 
earthquakes for nine frequency bands with center frequencies ranging from 2 to 10 Hz. Note 
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Figure 45. Similar to Figure 42a for (1-4 Hz)/(8-12 Hz) derived from instrument-response 
corrected (a) Pg and (b) Sg, indicating the mean values of the explosion and earthquake 
populations separated by 0.67 and 0.98 log units, respectively and no overlap (except for 
explosion no. 7 for Pg) between data points from the two types of sources. 
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Phillips and Aki, 1986; Steensma and Biswas, 1988). We applied the single-station spectral 
discrimination method based on the use of coda waves, successfully used by Hartse et al. 
(1995). Because of short recording times, coda immediately following the Sg arrival was used 
by applying a source-receiver distance correction as outlined in Roecker et al. (1982). The 
method we used also corrected for noise by using a sample of noise before the onset of Pg. 
Figure 47 shows the results for source factor (SF) difference between (a) 2-4 Hz band and 6-8 
Hz band, and (b) 2-4 Hz band and 4-6 Hz band. The mean values for explosion and earthquake 
populations are well separated (by 0.51 and 0.34 log units, respectively) and there is no overlap 
among data points belonging to the two sources, except for one explosion. Considering Figures 
42 through 47, the most effective source discriminants appear to be those based on the spectral 
content of Sg and the coda waves. 

We next analyzed all available, well-recorded events at station PRNI; only 14 events (5 quarry 
blasts and 9 earthquakes) were found to have fairly good signal/noise ratio at higher 
frequencies. Waveforms of these 14 events are shown in Figures 48 and 49. The source- 
receiver distances varied from about 260 to 300 km. The Pn spectra of most events had poor 
S/N for frequencies less than about 2 Hz, although the Lg spectra were good for frequencies 
above 1 Hz. Some of the results are shown in Figures 50 and 51. Unlike the poor source 
discrimination shown by the high-frequency Pg/Sg in Figure 43b, Pn/Lg, averaged over 5-8 Hz, 
showed good separation (no overlap) between data points from the two sources (Figure 50a). 
Even better source discrimination is indicated by the instrument-response corrected Lg (1-3 
Hz)/(5-8 Hz), as shown in Figure 50b; this result is similar to that for Sg in Figure 45b. 

Results for the mean slope over the frequency range of 1-5 Hz for the instrument-response 
corrected Pn and Lg spectra are shown in Figure 51a, and 51b, respectively. There is hardly 
any separation for Pn, unlike the results for Pg in Figure 46a which showed fairly good 
separation. The spectra of Lg (Figure 51b) indicate excellent source discrimination, similar to 
the result for Sg in Figure 46b. 

5.3 Discussion of Results 

An examination of the above results from the Galilee dataset suggests several interesting 
possibilities for improved source discrimination. It seems that, for purposes of source 
discrimination, Sg and Lg are considerably more useful and stable phases to work with than are 
Pn or Pg. Although ripple firing is known to influence drastically the observed spectra of 
quarry blasts used in this study (Gitterman and Eck, 1993), the discrimination capability of Sg 
or Lg did not seem to be affected. There have been a few earlier studies of spectral slope as a 
discriminant but with ambiguous results. Analyzing high frequency data, Chael (1988) found 
the spectral slope of Pg to be a good discriminant for NTS explosions and southwestern U.S. 
earthquakes, whereas Carr's (1992) study of events recorded at the NORESS array indicated 
that the spectral slope of Pn did not distinguish between mine blasts and earthquakes. Wuster's 
(1993) study of chemical explosions and earthquakes in central Europe recorded at the 
ARCESS array showed examples of spectra in which the S-wave groups from earthquakes were 
relatively richer in high frequency energy than those from the mine blasts. Our study of 
spectral slope of S and Lg is perhaps the first detailed and successful investigation of this type, 
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because (1) it is based on the mechanism of generation of the low-frequency S or Lg from 
explosions, (2) analyzes data from two stations well separated from each other, and (3) shows 
excellent separation between the explosion and earthquake populations. Lastly, our preliminary 
results demonstrate the need for using a combination of several source discriminants for 
improved reliability and effectiveness. For example, analysis of the station MML data, as 
shown in Figures 45a, 46a, and 47a indicate Event 7 (an explosion) to be an outlier, or the most 
like an earthquake. But the same event appearing in Figures 43a, 43b, 44a, and 44b behaves 
like an event most likely to be an explosion. Several other figures (such as Figures 45b, 46b, 
and 47b) easily identify Event 7 as an explosion. 

6.   CONCLUSIONS AND RECOMMENDATIONS 

Our analysis of both low- and high-frequency data from a large number of underground nuclear 
explosions, most of them with known ground truth and recorded at both local and regional 
distances, leads to the following principal conclusions: 

(1) Excellent agreement between observation and theory, mostly for Yucca Flat (NTS) 
explosions, confirms the dominant contribution of Rg-to-S scattering to the low-frequency Lg 
from explosions, as suggested earlier by Gupta et al. (1992) and Patton and Taylor (1995). 

(2) An effective CLVD source appears to be present not only for Lg from Yucca Flat (NTS) 
explosions, as suggested by Patton and Taylor (1995), but also for explosions from other test 
sites in significantly different geological environments. 

(3) Shot depth and subsurface structure are important in defining the spectral characteristics of 
the low-frequency (less than about 3 Hz) Lg, including the most important spectral null and 
peak. 

(4) Spectral null frequency in the low-frequency Lg depends strongly on shot depth and local 
velocity structure so that a comparison with theory can provide useful source information, 
including shot depth with an accuracy not possible by other methods. 

(5) Spectral peak in the low-frequency Lg from Yucca Flat explosions is associated with 
resonance caused by sharp impedance contrast in the source region. 

(6) Analyses of regional phases from explosions at both Nevada and Kazakh test sites support 
Blandford's (1995a,b) suggestion that the high frequency S or Lg from explosions is due to the 
generation of new cracks created by a tamped explosion and that these cracks should decrease 
as overburden increases. 

(7) A comparison of both low (less than about 3 Hz) and high frequency Lg may be useful for 
identifying clandestine cavity decoupled explosions. 
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(8) As demonstrated by our analysis of the Israeli Seismic Network data, new insight into the 
generation of broadband Lg from explosions suggests potentially useful discriminants for 
seismic monitoring of the CTBT. 

On the basis of results obtained in this study, the following recommendations are made for 
future work: 

(1) The broadband characteristics of Lg should be further investigated for regions other than 
the NTS so that the role of near-source scattering of explosion-generated Rg is clearly 
understood and exploited for deriving source and near-source information. 

(2) Improve the results obtained in this study by using more sophisticated theoretical and 
analytical methods and extend such work to other test regions. 

(3) Analyze local data from Salmon and Sterling, such as that discussed in Section 4.2.3, to 
understand why results from closely-located sensors are significantly different from one sensor 
to another. 

(4) In order to fully understand the generation of high-frequency S from explosions, analyze 
additional near-field, local, and regional high-frequency data from tamped, decoupled, and 
overburied explosions. 
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